Létezik Afrikában egy atomerőmű, ami már másfél milliárd évvel ezelőtt működött

2023 / 02 / 19 / Bobák Zsófia
Létezik Afrikában egy atomerőmű, ami már másfél milliárd évvel ezelőtt működött
Egy 1972-es felfedezés kétségbe vonta, amit korábban az emberek az önfenntartó nukleáris láncreakciókról gondoltak, kiderült ugyanis, hogy az első ilyen folyamatot nem 1942. december 2-án indították el Chicagóban, hanem már legalább 1,7 milliárd évvel ezelőtt lezajlott.

1942. december 2-án a chicagói Stagg Field Stadion alatti teremben 38 amerikai, egy olasz (Enrico Fermi), egy kanadai (Walter H. Zinn) és két magyar (Szilárd Leó és Wigner Jenő) résztvevő jelenlétében meggyújtották az első atommáglyát, ami az első önfenntartó nukleáris láncreakció demonstrálására szolgált. Wigner visszaemlékezése alapján az eseményen mindenki visszafogottan ünnepelte a sikert, de valójában nagyon is tudatában voltak a kísérlet jelentőségének.

"Középen egy nagy máglya volt, fekete grafittéglákból és fagerendákból építve. Alapja négyzetalakú volt, fölfele keskenyedett. Ebbe voltak beágyazva az urántömbök.

Fermi neutronelnyelő kontrollrudakat szerelt a máglya fölé. Vészhelyzetre gondolva még egy „öngyilkos osztag” is állt a máglya tetején, hogy szükség esetén vödrökből neutron-elnyelő kadmium-só vizes oldatát zúdítsa a máglyába, a láncreakciót leállítandó." - idézte fel később Wigner a napot, amikor a világ első szabályozott atomreaktora működésbe lépett.

30 évvel később, 1972-ben azonban kiderült, a chicagói atommáglya csak az ember által létrehozott első önfenntartó nukleáris láncreakció volt, a természet korábban már "alkotott" egy valódi atomerőművet a Földön, ami hosszú évezredeken át táplálta a fissziós folyamatokat.


Az oklói helyszín felépítése, a fekete részek a reaktor zónákat jelölik (Kép: Wikimedia Commons/MesserWoland)

1972 őszén egy franciaországi tudományos konferencián Francis Perrin, a francia Atomenergia Bizottság korábbi tagja, érdekes felfedezésről számolt be az összegyűltek előtt: ekkor ismertette az eredményeit azoknak az elemzéseknek, amelyeket az afrikai Gabonban található Oklo uránlelőhely mintáival kapcsolatban végeztek. A bánya egy 2,1 milliárd éves üledékes régióban található az ország délkeleti területén, amely nagy koncentrációban tartalmaz uránérceket, de az anyagokból vett minták egészen szokatlan képet festettek az innen származó uránról: az egyik izotópja, az urán-235 csak 0,717%-át tette ki a teljes tömegének (a többit főként az urán-238 alkotja). A Földön található urán valamikor az ősidőkben jóval nagyobb arányban állt urán-235-ből, de az U-238 és az U-235 eltérő felezési ideje miatt a jelenkorra már jelentősen lecsökkent az atomreaktorokban is használt 235-ös izotóp mennyisége,

jelenleg 0,7204%-ot tesz csak ki.

Az Oklóban felfedezett uránérc 0,717%-os U-235 szintje (ami a Time korabeli beszámolója alapján csak 0,44% volt bizonyos mintákban) és a bolygó többi régiójában előforduló urán 0,7204%-os szintje közötti apró eltérés azonban nagyon is soknak számít, elegendő ahhoz, hogy a kutatók lehetetlennek találják a felfedezését.


Egy Oklóból származó minta, amelyet a Bécsi Természettörténeti Múzeumnak adományoztak (Kép: Ludovic Ferrière/Natural History Museum)

A Nemzetközi Atomenergia Ügynökség leírása szerint így is történt: Perrin és munkatársai az afrikai minták vizsgálatának eredményeire elsőre nem találtak semmilyen kielégítő magyarázatot. A további mérések során viszont figyelmesek lettek egy árulkodó jelre, ami végül rávilágított a megoldásra: olyan anyagokat találtak a mintákban, amelyek a fissziós reakciók során keletkeznek, többek között xenont és ruténiumot. A kutatók ekkor ébredtek rá, hogy az oklói lelőhely képében rábukkantak az első ismert természetes atomreaktorra, amit nem az ember, hanem a körülmények összjátéka hozott létre.

Ahhoz, hogy Oklóban kialakulhasson az önfenntartó nukleáris láncreakció, több feltételnek is teljesülnie kellett - egyidejűleg jelen kellett lennie megfelelő mennyiségű hasadóanyagnak, egy olyan összetevőnek, ami beindítja a fissziót és egy másik anyagnak, ami moderálja a folyamatot. Az elsőt a kétmilliárd évvel ezelőtt még 3,5%-ban urán-235-öt tartalmazó uránérc adta, a másodikat, ami a maghasadást előidéző neutronokat kibocsátotta, szintén az urán képviselte (aminek bomlása közben szabadulnak el a neutronok), a harmadik, moderáló közeget pedig a vízzáró réteg felett összegyűlő és az érceket ellepő víz, ami valószínűleg a közeli folyókból, a feltörő talajvízből és esővízből származott. A természetes reaktor működéséhez tehát minden fontos részlet rendelkezésre állt.

Az uránból felszabaduló neutronok villámgyors mozgásuk miatt alapvetően nem tudnának maghasadást indukálni, de a víz jelenléte lassítja a tempójukat, ezért útjuk során uránatomokba ütköznek és elegendőek magas U-235 szint mellett láncreakciót indítanak be. Ez mára már azért nem fordulhat elő a természetben, mert a 0,72%-os izotóparány túl alacsony a reakció bekövetkeztéhez, de évmilliárdokkal ezelőtt még mások voltak a körülmények. A fisszió viszont egy önszabályozó és a reakciót leállító folyamathoz vezet: a láncreakció közben akkora energia szabadul fel, hogy a jelenlévő vizet felforralja, a forró és elpárolgó víz pedig már nem bír olyan lassító hatással, ami a neutronok sebességét megfelelően csökkentené.

Ekkor a neutronok tova repülnek és a folyamat véget ér.

A közben újra beszivárgó és az uránércek felett összegyűlő víz ennek következtében hűlni kezd, a neutronok újra lassulnak és a nukleáris reakció újra beindul. Ez az önfenntartó, de folyamatosan be-, és kikapcsoló ciklus átlagban három óránként ismétlődőtt az Oklóban található 17 különböző reaktorzónában: 30 perc kellett a víz felforrásához és 2 és fél óra a hűléshez.

2004-es vizsgálatok szerint az atomerőmű működése közben, egy-egy zónában nagyjából 100 kW energiát termelt ebben a fél órában és a folyamat sok tízezer-százezer évig tartott. Az afrikaihoz hasonló természetes reaktorok a megfelelő összetevők megléte esetén máshol is előfordulhattak a világban, de egyelőre ez az egyetlen helyszín, ahol erre utaló nyomokat találtak a kutatók. Ennek oka lehet az is, hogy a hosszú évmilliók alatt egyszerűen elkoptak és elpusztultak azok a kőzetek, amelyek nyomra vezethetnének, de az sem kizárt, hogy kevés helyen alakultak ki a minden fontos részletet tartalmazó rendszerek, amelyek sokáig fenntarthatták a kontrollált láncreakciót, emiatt nehéz ehhez fogható felfedezést tenni a kutatások során.

(Fotó: Ludovic Ferrière/Natural History Museum, Robert D. Loss/Curtin University/US Department of Energy)

Egy ausztráliai atomreaktorban derülhet ki, hogy tud-e több irányba is telni az idő Bár az idő múlása a mi szempontunkból teljesen lineárisnak tűnik, a tudósok régóta feltételezik, hogy az idő nem csak egy irányba tud folyni. Az elméletet hamarosan Ausztrália egyetlen működő atomreaktorában fogják igazolni - vagy cáfolni.


Így lettek a szexuális játékszerekből digitális kütyük
Így lettek a szexuális játékszerekből digitális kütyük
Lassan már senkit sem lep meg, hogy egy intim segédeszköznek legalább olyan jól kell tudnia csatlakoznia a wifihez vagy egy telefonhoz, mint a viselőjéhez, használójához.
Olyan folyadékot készítettek a Harvardon, ami newtoni és nemnewtoni módon is viselkedik
Olyan folyadékot készítettek a Harvardon, ami newtoni és nemnewtoni módon is viselkedik
A metafolyadékban apró gömbök vannak, amelyek lehetővé teszik, hogy a folyadék változtassa a tulajdonságait.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.