A kvantummechanikai hullámfüggvény elvileg minden információt tartalmaz egy adott rendszerről, de akadnak korlátai. Egy hidrogénatom esetében még pontosan meg tudjuk oldani a Schrödinger-egyenletet, hogy megkapjuk a rendszer hullámfüggvényét. Ezután pedig meg tudjuk határozni a rendszer megengedett energiaállapotait. Sajnos azonban lehetetlen megoldani a Schrödinger-egyenletet egy több testből álló rendszer esetén. A sűrűség-funkcionális elmélet (Density Functional Theory/DFT) lényegében ezen segít: ez egy működő teória az atomok, molekulák és szilárd anyagok elektronszerkezetének kiszámítására. A célja pedig az anyagok tulajdonságainak kvantitatív megértése a kvantummechanika alaptörvényei alapján.
Az elméletet a hatvanas években dolgozták ki, és a DeepMind a mély tanulás rendszerével most ennek felhasználhatóságát tette pontosabbá: a neurális hálózatok segítségével ugyanis pontosabb térképet lehet készíteni az elektronok közötti sűrűségről és kölcsönhatásokról, mint korábban bármikor. A sűrűségfunkcionált neurális hálózatként fejezték ki, miközben a betanulási adatsorba pontos tulajdonságokat adtak meg – így a DeepMind mélytanulásos modellje a funkcionálokat két fontos rendszerhibától (delokalizációs hiba, forgásszimmetria törése) mentesen sajátította el. A végeredmény pedig, hogy a modell megbízhatóbb leírását adja az eddigieknél többféle kémiai reakciónak.
Rövid távon mindezez lehetővé teszi a kutatók számára a DFT pontosabb felhasználását, méghozzá akár azonnal is, mivel a DeepMind mind a publikációt, mind az algoritmust nyílttá, bárki számára elérhetővé tette éppen a felhasználási terület minél gyorsabb fejlődése érdekében. Hosszú távon pedig ez egy újabb lépés, amely megmutatja a mély tanulás lehetőségeit az anyag kvantummechanikai szintű szimulálásában. A gyakorlatban ez azt jelenti, hogy lehetővé válik, hogy a kutatók nanoméretű szinten vizsgálják meg az anyagokkal, gyógyszerekkel és katalizátorokkal kapcsolatos kérdéseiket. Miként James Kirkpatrick, a DeepMind kutatója nyilatkozott:
„A nanoméretű technológia egyre fontosabb a 21. század legfőbb kihívásainak a megoldásában, legyen szó tiszta elektromosságtól vagy műanyagszennyezésről.”
A mostani kutatás tehát az elektronok és köztük zajló kölcsönhatások – mint Kirkpatrick fogalmazott: tehát a molekulákat egyben tartó "ragasztó" jobb megértését teszi lehetővé.
(Fotó: Pixabay/geralt)