Az eddig lehetetlennek hitt egyirányú szupravezető, amellyel négyszázszor gyorsabbak lehetnek a számítógépek

2022 / 04 / 30 / Felkai Ádám
Az eddig lehetetlennek hitt egyirányú szupravezető, amellyel négyszázszor gyorsabbak lehetnek a számítógépek
Az egyirányú, mágneses mező nélküli szupravezetőt a szupravezetők 1911-es feltalálása óta lehetetlennek hitték. Most mégis elkészült – ez pedig új korszakot nyithat az egész világ számára.

1911-ben a holland fizikus, Kamerlingh Onnes felfedezte a szupravezetőket, amelyek lényege, hogy az áram ellenállás nélkül képes rajtuk keresztülhaladni. Ez első pillantásra jó dolog, ugyanakkor mindez azt is jelenti, hogy a szupravezetőben nem lehet az elektromosság áramlását blokkolni vagy gátolni, az pedig végképp lehetetlen, hogy szabályozzuk az áramlás irányát – pedig ez a számítástechnikai felhasználás alapja kellene, hogy legyen. Ettől független többen is tanulmányozták a szupravezetők ilyetén felhasználását, a hetvenes években például az IBM próbálta bevezetni a technológiát a számítástechnikába, de sikertelenül – akkor lényegében azzal zárult a kísérlet, hogy a szupravezetőkre épülő számítógép lehetetlen. A mostani kutatás épp ezért jelentheti egy új korszak nyitányát – ahogy a kutatásvezető, Mazhar Ali fogalmazott:

„Ha 20. század a félvezetők korszaka volt, úgy a 21. a szupravezetők korszaka lehet.”

Hogy érzékeltessük valamiképp a megvalósult lehetetlent, íme egy hasonlat: az egyirányú szupravezető olyan, mint egy olyan speciális jég lenne, amelyen az egyik irányba csúszva abszolút nincs súrlódás, a másik irányba viszont totális a súrlódás. A mostani találmány, a Josephson Dióda azonban nem jöhetett volna létre egy új anyag, az Nb3Br8 nevű, kétdimenziós kvantumanyag nélkül – hogy a mágneses mező nélküli, csak egy irányba vezető szupravezető megvalósult, az ennek, az amerikai Johns Hopkins Egyetemen kifejlesztett anyagnak köszönhető. Háromdimenziós anyagokkal ugyanis nem lehetett volna felépíteni azt a pár atomnyi vastag „szendvicset”, amely a szóban forgó dióda alapját jelenti.

Három kérdés merül fel: mik a lehetséges alkalmazási területek, mennyire megbízható a dióda működése, illetve mik a kutatók további tervei ezzel kapcsolatban?

Jelenleg sok technológia épül az immár réginek nevezhető szupravezetőkre, például az orvosi képalkotó eljárás, az MRI. Illetve erre épülnek a jelenlegi kvantumszámítógépek is. Most azonban lehetővé válik olyan eszközök kifejlesztése is, amik eddig csak és kizárólag félvezetőkkel voltak megvalósíthatóak. Ennek lenne egy környezetvédelmi vonzata, hiszen ezek a számítógépek sokkal energia-hatékonyabbak lennének, viszont emellett a jelenlegi 3-4 százszorosára ugrana a számítási sebesség. Mindehhez azonban még hátravan pár lépés – először is el kell érni, hogy a szupravezető magasabb üzemeltetési hőmérsékleten (-196 Celsius-fok vagy 77 K felett) is működjön, mert így már folyékony nitrogént is lehetne használni a hűtéshez. Ezt követi, hogy megvalósítsák az ipari léptékű gyártást, mivel eddig csak a koncepció működőképességét szerették volna bizonyítani, ezért csak néhány ilyen dióda létezik mindössze.

A szupravezető azonban valóban működőképes, ezt több módon is ellenőrizték, például sikerült többször, eltérő körülmények, kutatók, eszközök, sőt adott esetben országok esetén is reprodukálni a kutatási eredményt. Mint a kutatásvezető fogalmazott: „Sok készüléket építettünk fel különböző anyagokból az alapokról, és minden alkalommal ugyanazokat a tulajdonságokat találtuk, még akkor is, ha különböző országokban különböző gépeken más-más ember végezte a mérést.”

A kutatók emellett is végeztek több ellenőrzést is, például „megfordították” a diódát, és a várakozásoknak megfelelően az egyik irányba nem jelent meg ellenállás, a másikban viszont igen.

Mindez igencsak biztató, de ezek a szupravezetők első körben nem az otthoni eszközökben terjednek majd el, hanem a szerverfarmok és a szuperszámítógépek szegmensét fogják brutálisan átalakítani. Ez azonban kihatással lesz a mindennapi életre is, mivel a világ amúgy is a centralizált számítási feladatok irányába mozdult el, vagyis a komolyabb számítási feladatokat a fentebb említett eszközök és intézmények végzik, ahol az energiaelosztás, hűtés könnyebben menedzselhető feladatot jelent, mintha ezeket a feladatokat szétszórva végeznénk. Ráadásul ez a meglévő infrastruktúra elég olcsón átállítható a Josephson Diódára alapuló eszközök fogadására.

Magyarán akad még tennivaló, elsősorban a hűtés és nagyüzemi előállítás kidolgozása kapcsán, azonban a legfontosabb már bebizonyosodott: a lehetetlen igenis lehetséges – és a centralizált IT, valamint a szuperszámítógépek világa talán épp forradalom előtt áll. És ezzel együtt a mindennapjaink is.

(Kép: Művészi ábrázolás egy szupravezető chipről/TU Delft)


Hello Szülő! Ha a gyereked nem tud valamit, akkor téged fog kérdezni. De ha te szülőként nem tudsz valamit, akkor kihez fordulsz?
A digitális kor szülői kihívásairól is találhattok szakértői tippeket, tanácsokat, interjúkat, podcastokat a Telekom családokat segítő platformján, a https://helloszulo.hu/ oldalon.
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Repül már a vén diák. Hová? Hová?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogy áll a magyar lakosság generációkra bontva a kiberbiztonsághoz? – Erről szól az ESET rendkívül átfogó felmérése, amelyből olyan meglepő eredmények is kiderülnek, hogy kik a romantikus csalások legfőbb célpontjai, miközben az adott csoport nem is nagyon ismeri ezt a fenyegetést.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.