Bár az Egyesült Államok Energiaügyi Minisztériuma hivatalosan csak kedden fogja bejelenteni az áttörést, ám a The New York Times-nak és a The Guardiannek több kormányzati tisztségviselő és kutató is megerősítette, hogy a Financial Times információi helytállóak, és a bejelentésen valóban arról lesz szó, hogy sikerült elérni a begyulladási állapotot.
A fúziós energiát régóta az energiatermelés szent gráljaként emlegetik tudományos körökben, hiszen az eljárás lehetővé tenné, hogy gyakorlatilag végtelen mennyiségű, károsanyag-kibocsátásmentes energiára tegyünk szert, mindezt teljesen biztonságosan, a fissziós atomerőművekre jellemző radioaktív hulladék nélkül. Az ilyen kísérletek a Napban lejátszódó magfúziót igyekeznek mesterségesen megismételni, vagyis azt a folyamatot, amelynek során a hidrogénatomok héliummá olvadnak össze, miközben energia szabadul fel. A fúziós reakciót lehetővé tevő tokamak reaktorokkal ma már a világ számos országában kísérleteznek, a legfrissebb hírek szerint pedig az sem elképzelhetetlen, hogy akár már a 2030-as években beindulhat az energiatermelésnek ez a forradalmian új módja.
A kaliforniai Lawrence Livermore kutatóintézetben azonban egészen más eljárást alkalmaznak, hiszen reaktor helyett itt egy 192 lézersugarat magában foglaló, nagy energiájú lézert használnak a fúzió beindításához, amelyet egy mindössze két milliméteres, deutériumot és tríciumot tartalmazó kapszulára irányítanak. A kapszula a lézersugár hatására összenyomódik és felhevül, ennek eredményeként pedig hélium és alfa-részecske keletkezik. A Financial Times értesülései szerint a szóban forgó kísérletben a hidrogénatomok felmelegítéséhez mintegy 2,1 megajoule energiára volt szükség, aminek eredményeként 2,5 megajoule energiát sikerült előállítani, vagyis a kísérletben energiatöbblet keletkezett. A kísérlet szempontjából nincs jelentősége, de ez az energiatöbblet körülbelül 0,1 kWh energiának felel meg, ami a The Guardian szerint nagyjából arra lenne elegendő, hogy felmelegítsünk vele egy teáskannányi vizet.
Azt is fontos ugyanakkor megjegyezni, hogy az energiatöbblet a kísérletnek csak arra a részére igaz, ami magához a reakció beindításához szükséges, azonban mivel a National Ignition Facility lézere meglehetősen alacsony hatékonysággal működik, így a működtetéséhez jóval több, mintegy 500 megajoule energiára volt szükség a kísérlet során. Jeremy Chittenden, az Imperial College London plazmafizikai professzora szerint ugyanakkor ez ebben az esetben nem probléma, hiszen a létesítményt alapvetően nem arra hozták létre, hogy fúziós reaktort fejlesszenek, így az energiahatékonyság nem volt szempont az építésekor. A Lawrence Livermore kutatóintézetet az '50-es évek elején hozták létre azzal a céllal, hogy ösztönözzék az atomfegyverek fejlesztését, így az 1965-től induló lézeres kísérleteknek is az volt az eredeti célja, hogy az Egyesült Államok atomrobbantások nélkül is képes legyen fejleszteni a nukleáris fegyverzetét.
A kutatóintézetnél nem ez volt az első komoly áttörés a fúziós energia kutatásában, hiszen korábban szintén itt sikerült elérniük a kutatóknak a világon elsőként az "égő plazma" állapotot is, amely azt jelenti, hogy a fúziós reakció több energiát termelt, mint amennyi az üzemanyag felmelegítéséhez szükséges. Azt ugyanakkor a biztató eredmények ellenére sem lehet még kijelenteni, hogy a fúziós energia karnyújtásnyi távolságba került; erről maga a kísérlet egyik vezetője, Dr. Robbie Scott is úgy nyilatkozott, hogy még rengeteg munka van hátra, mire a technológiát energiatermelésre is fel lehet majd használni.
(Borítókép: a National Ignition Facility tesztkamrája, ahol a lézeres kísérletek zajlanak, Fotó: Damien Jemison/Lawrence Livermore National Laboratory)