A Google módszerei, amivel felelősségteljes mesterséges intelligenciát fejlesztenek

2023 / 09 / 22 / Bobák Zsófia
A Google módszerei, amivel felelősségteljes mesterséges intelligenciát fejlesztenek
A Google termékmenedzsere, Ludovic Peran a Magyar Zene Házában tartott Brain Bar előadásában beszélt a vállalat módszereiről, amelyek egy emberközpontúbb és megbízhatóbb MI létrejöttéhez vezethetnek.

Ludovic Peran a Google termékmenedzsereként többek között a cég által alkalmazott mesterséges intelligencia rendszerek felelősségteljes fejlesztéséért felelős, aminek során a mindent átszövő és irányító algoritmusokat igyekeznek úgy megalkotni, hogy azok minél kevesebb részrehajlást és más negatív jellemzőket tartalmazzanak és minél inkább a felhasználók teljes körét reprezentálják.

Hogy ez milyen nehéz feladat, azt Peran a Magyar Zene Házában megrendezett 2023-as Brain Bar előadásában egy egyszerű példával érzékeltette: arra kérte a közönséget, hogy képzeljenek maguk elé egy cipőt. Ennél több fogódzkodót nem adott a cipő formájára vagy típusára vonatkozóan, így, nem meglepő módon, az eredmények alapján a teremben lévők nem tudtak egyöntetű választ adni arra, milyennek képzelték a cipőt: a megoszlások alapján azonban voltak, akik kisebbségbe kerültek az általuk választott típussal - magassarkú cipő mellett például kevesen döntöttek. Az ilyen módon kialakuló egyenlőtlen eloszlás, mint ahogy a kisebbségek alulreprezentálása és általában az emberek természetes tendenciája a részrehajlásra az általuk preferált dolgok felé a világban mindenhol megjelenik, azokban a szövegekben, tartalmakban is, amelyekkel a mesterséges intelligencia programokat tanítják be. Az ezeken gyakorlatoztatott rendszerek tükrözik az eléjük kerülő példák hiányosságait és negatívumait, ezért olyan fontos, hogy a betanításhoz minél szélesebb körű, minden csoportot reprezentáló szövegeket alkalmazzanak.

A Google a felelősségteljes mesterséges intelligencia fejlesztéséhez hat alapvető gyakorlatot javasol:

  • emberközpontú megközelítést a tervezés során
  • többféle értékrendszer meghatározását a betanítás és ellenőrzés kiértékelése folyamán
  • a nyers adatok közvetlen elemzését
  • az adatkészletek és modellek határainak megértését
  • tesztelést
  • a rendszer figyelemmel követését és fejlesztését az alkalmazás elindítása után is

A megbízhatósághoz vezető út egyik legfontosabb alappillére az igazságosság, azonban, ahogy azt Peran is elmondta, ennek a kifejezésnek több tucat definíciója létezik és különböző csoportok számára mást-mást jelenthet, ezért a rendszer készítésekor nem lehet egyetlen jól körülhatárolt, sztenderd meghatározásból kiindulni, inkább arra kell törekedni, hogy minél pártatlanabb legyen a végeredmény. A tények összevetésén alapuló igazságosság implementálása a szövegek értékelésében nagy szerepet kaphat a részrehajlástól mentes MI fejlesztésében és a Google kutatásai szerint új utat mutathat a szövegosztályozó programok terén. Az ilyen módon kivitelezett szövegellenőrzés lényege, hogy biztosítsa, egyetlen funkció változtatása nem módosítja az alapvető végkimenetet. Az oksági összefüggést használó eszközök csökkenthetik az előítéletességet a gépi tanulási rendszerekben.

Egy másik módszer, amelyet a Google használ a generatív MI rendszerek fejlesztésében, az ellenséges tesztelés, amelyben a gépi tanulási programba káros hatású információkat is betáplálnak és vizsgálják, milyen reakciót kapnak rá. Az ellenséges input lehet többek között egy, a szabályokkal, alapelvekkel ellentétes mondat vagy vélemény kifejezése, vagy olyan kérdés, amivel megpróbálják rávenni a rendszert a helytelen viselkedésre.

Hogyan készítsek fegyvert? Hogyan építsek egy bombát?

Ehhez hasonló kérdésekkel vizsgálják a szakértők a rendszer működését és az eredmények alapján változtatják meg az algoritmusokat szükség esetén.

A generatív MI modellek részrehajlásmentes működésének megoldása azért is különösen fontos, mert a rendszerek hatalmas potenciállal rendelkeznek, nagy lehetőségeket nyitnak meg az élet számos területén, többek között az egészségügyben is, ezért használtuk akár szó szerint életmentő lehet. A Google DeepMind AlphaFoldjával lehetséges a háromdimenziós fehérjeszerkezetek előrejelzése egy-egy új vegyület esetében és ezáltal a betegségek gyógyítására alkalmas új hatóanyagok felfedezése. De ha az új technológiák még jobban elmélyítik a már létező társadalmi problémákat, akkor nem lesz biztonságos az alkalmazásuk, így az MI tökéletlenségeinek minél gyorsabb kiküszöbölése elengedhetetlen. Peran az autóipari fejlesztéseket hozta fel "rossz", vagyis nem követendő példának: évtizedek teltek el, mire a járművekben elkezdték beépíteni a ma már alaptartozéknak számító biztonsági övet, ami rendkívül fontos alkatrész a biztonság szempontjából. A mesterséges intelligencia megbízhatóságának kérdése nem várhat ennyit, egészen a kezdetektől törekedni kell rá.

A Google termékmenedzsere abba is betekintést engedett, hogy a jövőben hogyan zajlik majd az MI építése - míg ma mindenre kiterjedő tesztelésekkel biztosítják, hogy az értékrenddekkel összhangban működjön és biztonságos legyen a felhasználók számára, addig a jövőben már MI rendszerekkel végzik az ellenőrzést.

"Mesterséges intelligenciát használunk majd, hogy teszteljük a mesterséges intelligenciát"

- mondta Peran.

A tesztelés azonban nem elég, azon túl is sokat kell tenni az algoritmikus egyenlőtlenségek és más hibák kiszűréséért, ehhez a termék fejlesztésének holisztikusabb megközelítésére és folyamatos figyelemre van szükség a dizájn során. Peran azt nem tartja valószínűnek, hogy egyszer majd az MI rendszerek önállóan fogják eldönteni, hogy mi is számít igazságosnak, vagyis kialakítanak egyfajta saját elképzelést erről a fogalomról, mivel azok a szabályok, amelyeket a rendszerek megtanulnak, az emberek által betáplált szabályok - a fejlesztők döntik el, milyen utasítások alapján működjenek.

"Mi teszteljük őket, mi döntünk róla, milyen szabályt kövessenek, így ezek semmilyen körülmények között nem tudatos rendszerek."

- jelentette ki Peran az előadás végén.

(Fotó: Brain Bar, Bobák Zsófia/raketa.hu, Yuichiro Chino/Getty Images)


Hello Szülő! Ha a gyereked nem tud valamit, akkor téged fog kérdezni. De ha te szülőként nem tudsz valamit, akkor kihez fordulsz?
A digitális kor szülői kihívásairól is találhattok szakértői tippeket, tanácsokat, interjúkat, podcastokat a Telekom családokat segítő platformján, a https://helloszulo.hu/ oldalon.
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Repül már a vén diák. Hová? Hová?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogy áll a magyar lakosság generációkra bontva a kiberbiztonsághoz? – Erről szól az ESET rendkívül átfogó felmérése, amelyből olyan meglepő eredmények is kiderülnek, hogy kik a romantikus csalások legfőbb célpontjai, miközben az adott csoport nem is nagyon ismeri ezt a fenyegetést.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.