Ha ez egy vicc lenne, valahogy így kezdődne: a biológia, a kémia és az anyagtudományok besétáltak egy bárba – az eredmény azonban nem egy olyan csattanó, amit a lakosság egy százaléka ért mindössze, hanem egy következő generációs, elképesztő tulajdonságokkal rendelkező anyag. Mint azt a University of Kent sajtóközleménye írja, az úttörő, valamint szabadalmaztatott technológia nemcsak a védelmi ipart, de a bolygótudományokat is megreformálhatja.
A szóban forgó anyag neve TSAM (Talin Shock Absorbing Materials) – ez egyben első ismert példája az úgynevezett SynBio (szintetikus biológiai) anyagnak, amely képes kivédeni a szuperszonikus lövedékek becsapódását. Ez megnyitja az utat a következő generációs golyóálló páncélok és lövedékbefogó anyagok fejlesztése előtt, amelyek lehetővé teszik a hipersebességű hatások tanulmányozását az űrben és a felső légkörben (asztrofizika). Mint az a névből is látható, a páncél a talin nevű fehérjén alapul, amely a sejtváz (citoszkeleton) egy adapter fehérjéje, és amint azt a kutatásvezető, Ben Goult professzor elmagyarázza: a talin a sejtjeink természetes „ütközéscsillapítója”, és lényegében ez védi a sejtjeinket a nagyobb erőbehatásoktól.
A kutatók a talint tehát az említett TSAM-má polimerizálták, és azt találták, hogy monomer tulajdonságai hihetetlen ellenállóvá teszik az immár polimer anyagot is. A demonstrációhoz a csapat ezt a hidrogél anyagot 1,5 km/s-os szuperszonikus hatásoknak vetették alá – ez nemcsak az űrben keringő részecskék becsapódásánál gyorsabb (általában > 1 km/s), de a lőfegyverek jellemző torkolati sebességén is – ez utóbbi általában 0,4-1,0 km/s közé esik. Ezenkívül a csapat felfedezte, hogy a TSAM-ok nemcsak elnyelik a becsapódás erejét, hanem az ütközés után meg is őrzik ezeket a lövedékeket – aminek az űrkutatásban lesz jelentősége.
Az anyag a ma használt testpáncélok legtöbb negatív tulajdonságát képes kiküszöbölni.
A jelenlegi páncélok általában kerámia lemezekből állnak, amelyet szálerősítésű kompozit támaszt alá – de a páncél egészében nehéz és kényelmetlen. Ezenkívül bár ez a páncél hatékonyan blokkolja a golyókat és a repeszeket, nem csillapítja a kinetikus energiát, ami a páncél mögött tompa, az erős ütésből adódó traumás sérülést eredményezhet. Ráadásul a páncél gyakran javíthatatlanul megsérül, miután felfogta a lövést, mert a szerkezeti integritása visszavonhatatlanul károsodik. Így a páncél a továbbiakban nem lesz használható. A TSAM esetén viszont mindez a hátrány nem jelenik meg: egy TSAM alapú páncél könnyebb, nem megy tönkre miután felfogta a lövést, valamint elnyeli a kinetikus energiát is – magyarán ez utóbbiak nyomán sem alakul ki sérülés.
Lentebb írtunk például a világ első, 50 kaliberre is hitelesített testpáncéljáról, ami valóban felfogta a lövedéket, de azért ha ebben eltalálnak minket egy ilyen skulóval, nem mosolyognának szívből jövően. A TSAM alapú páncél elméletileg azonban a lövés nyomán kialakuló zúzódásoktól és csonttöréstől, valamint a belső szervek sérülésétől is megvéd – ami valódi értelemben vett következő generációs testpáncélokat tenne kifejleszthetővé.
Na de a TSAM ráadásul nem csupán menő, következő generációs testpáncél, hanem az űrutazásban/űrkutatásban is jelentős anyag. Mint arra a sajtóközlemény ugyanis kitér: "a TSAM-ok képessége a lövedékek becsapódás utáni befogására és megőrzésére, alkalmazhatóvá teszi ezt az anyagot az űrhajózási szektorban, ahol olyan energiaelnyelő anyagokra van szükség, melyek egyben lehetővé teszik az űrszemét, az űrpor és a mikrometeoritok hatékony összegyűjtését további tudományos tanulmányozás céljából. Ezenkívül ezek a megőrzött, becsapódott objektumok megkönnyítik az űrhajózási berendezések tervezését, javítva az űrhajósok biztonságát és a költséges repülőgép-berendezések élettartamát. Itt a TSAM-ok alternatívát jelenthetnek az ipari szabvány aerogéllel szemben – amelyek hajlamosak megolvadni az objektum becsapódásából eredő hőmérséklet-emelkedés miatt".
(A cikkhez használt kép illusztráció, a forrása: Flickr/@USArmy)