Az első, történelmi pillantás egy fotonok által gerjesztett elektronra

2020 / 05 / 18 / Justin Viktor
Az első, történelmi pillantás egy fotonok által gerjesztett elektronra
A fizika és a kémia működésének titkai lassan feltárulnak, ahogy képessé válunk a fundamentumukat alkotó, jellegzetes folyamataik fázisokra bontására, megfigyelésére és ezáltal jobb megértésére. Olyan alapvető élmény ez, mint törvények felismerése és megértése volt, csak most már a motorháztető is nyitva, és odabent nézelődünk.

Az alfa

A fény-vezérelt reakciók mondhatni az emberi látás központi elemei, de igaz ez a a fotoszintézisre és a napenergia előállítására is. Az első, úgy értem a leges-legelső lépés észlelése egy ilyen  reakció során, megnyithatja az ajtót a kémiai kötések kialakulásának és megszakadásának pontos megfigyeléséhez és megértéséhez.


A tudósok most először látták közvetlenül a fényvezérelt kémiai reakció első lépését. A SLAC röntgensugaras szabadelektron lézerét használták az elektronok eloszlásának és változásainak szinte azonnali rögzítéséhez, ahogy a fény egy CHD-nek nevezett gyűrű alakú molekulába ütközött. 30 femtoszekundumon belül, vagyis a másodperc egymilliárdod részének egymilliomod részében az elektronfelhők nagyobb, diffúzabb felhőkké deformálódtak, ami már megfelel a gerjesztett elektromos állapotnak. (Greg Stewart, SLAC Nemzeti Gyorsító laboratórium)

Amikor egy molekula kölcsönhatásba lép a fénnyel, elektronjai képesek elnyelni az elektromágneses mezőből származó energiát, helyzetük gyors átrendezésével. Ez a finom átrendeződés a felkészülés arra, ami utána következik, és eldönti azt is, hogy a reakció hogyan alakul tovább. 

Most a Brown Egyetem, az Edinburgh-i Egyetem és az Egyesült Királyság Energiaügyi Minisztériuma SLAC nemzeti gyorsító laboratóriumának tudósai közvetlenül is megfigyelhették, hogy a molekula elektron felhői hogyan fúvódnak fel, mielőtt még a molekulát alkotó bármely atommag reagálna.

Ez az első alkalom a történelemben, hogy a tudósok ezt a válaszreakciót, egy molekuláris filmkészítésnek nevezett folyamat során közvetlenül is leképezték röntgensugarak segítségével. A céljuk az volt, hogy valós időben megfigyeljék, ahogy a kémiai kötések képződése vagy megszakadása során elektronok, és az atommagok működnek. Peter Weber, a Brown kémia professzora és a tanulmány vezető szerzője elmondta:  

„A múltbeli molekuláris filmekben már láthattuk, hogyan mozognak az atommagok egy kémiai reakció során, de a kémiai kötés létrejötte, amely az elektronok újraelosztásának eredménye, láthatatlan maradt. Most már képesek vagyunk megfigyelni, a vegyi kötések változását is, a reakciók során."

A tanulmányhoz a tudósok lézerfény hullámhosszon világították meg az 1,3-ciklohexadién (CHD) gáz mintáit, így gerjesztve a molekulákat olyan állapotig, amely viszonylag hosszú ideig, 200 femtoszekundumig fennmaradt. Elektromos felépítésüket így közben LCLS röntgen lézerimpulzusokkal vizsgálhatták. Adam Kirrander, az Edinburgh-i Egyetem tanára és a tanulmány vezető társszerzője elmondta:  „A röntgenszórást több mint 100 éve használják az anyag szerkezetének meghatározására, de ez az első alkalom a gerjesztés állapotának elektromos struktúráját közvetlenül is megfigyelték.”


A CHD molekulákat egy 200 nm-es UV pulzáló impulzus gerjeszti, a molekulákat 9,5 keV-os röntgen impulzusokkal tesztelik változó időbeni késleltetéssel. A szórásjeleket egy CSPAD detektoron rögzítik. (SLAC Nemzeti Gyorsító laboratórium)

Jel-bontás

Nem-rezonáns röntgenszórási technikát alkalmaztak a mintában lévő elektronok elrendezésének számszerűsítésére. A mérés során tapasztaltak szerint miközben az elektronokból származó jel gyenge maradt, a kutatók képesek voltak rögzíteni, ahogy az elektronfelhő egyértelműen nagyobb, óriási, diffúz felhővé alakult, amely megfelel a gerjesztett elektromos állapotnak. 

Haiwang Yong Ph.D. a Brown Egyetem hallgatója és a jelentés vezető szerzője beszámolójában:  “Kémiai reakcióban az atommagok mozognak, és ennek jelét nehéz szétválasztani azoknak a részeknek a jelétől, melyekben a kémiai kötések létrejönnek vagy éppen megszakadnak. Ebben a tanulmányban az atommagok helyzetének változása a vizsgált időtartamban viszonylag kicsi, tehát az elektronok mozgása azonnal “kiugrott” , miután a molekula elnyelte a fényt."

Michael Minitti, a SLAC vezető munkatársa hozzátette: „Leképezzük  ezeket az elektronokat, miközben mozognak és eltolódnak, ez előkészíti az utat az elektronmozgások közvetlen és valós időben történő megfigyelésére a kötések megszakadása és a kötések kialakulása közben, amit csinálunk, ebben az értelemben hasonló a fényképezéshez.”

(Forrás: Nature Communications Képek: )


Bárki is lesz az amerikai elnök, a Google és a Facebook nem fognak túl jól járni
Bárki is lesz az amerikai elnök, a Google és a Facebook nem fognak túl jól járni
Donald Trump alelnök-jelöltje, J. D. Vance, és a legvalószínűbb demokrata elnökjelölt, Kamala Harris sem lenne könnyű ellenfél a Szilícium-völgy nagyvállalatainak.
Átírhatja az élet keletkezését az óceán mélyén talált sötét oxigén
Átírhatja az élet keletkezését az óceán mélyén talált sötét oxigén
A bolygón a jelenleg ismert élethez szükséges az oxigén, ami biológiai úton keletkezett fény segítségével fotoszintézissel. Vagy mégsem? Egy mostani, döbbenetes felfedezés szerint az oxigén előállításához sem fényre, sem biológiai folyamatokra nincs feltétlen szükség. Az óceán mélye olyan titkát fedte fel, ami mindent megkérdőjelez.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.