Új anyagfázist hoztak létre, ami két idődimenzióval rendelkezik

2022 / 07 / 22 / Bobák Zsófia
Új anyagfázist hoztak létre, ami két idődimenzióval rendelkezik
Egy kvantumprocesszor qubitjait a Fibonacci-számsorozat mintázatát követő lézerimpulzusokkal bombázták és a kísérlet egészen meglepő új anyagfázist eredményezett.

A kvantumrendszerek hatékonyságának egyik kerékkötője a kvantumbitek érzékenysége: a qubitok állapota a környezet zajától befolyásolva könnyedén megváltozhat, elvesztve vagy megbízhatatlanná téve az általuk hordozott információt is. A kvantumszámítógépek hatalmas aranycsillárra emlékeztető külső kriogenikus hűtési rendszere éppen ezért szükséges összetevő a legtöbb architektúra esetén: a rendkívül alacsony hőmérsékletre hűtött qubitok kevésbé aktívan lépnek interakcióba a környezetükkel, és tovább tartják meg az eredeti kvantumállapotukat. Minél hosszabb ideig sikerül fenntartani egy kvantumbit helyzetét, annál jobb hatásfokkal tud dolgozni a kvantumszámítógép és annál jobban csökken a hibás számítások esélye.

A qubitok élettartamának növelése azonban bonyolult folyamat, méghozzá a különféle módszerek fejlesztése során az is fontos szempontot jelent, hogy a metódus egyszerűen alkalmazható legyen széles körben és gyakorlati körülmények között is. A szobahőmérsékleten működő kvantumszámítógépek, mint az IonQ gépe is, például jó megoldást jelenthetnek a csapdázott ionokat használó technológiával, ami szükségtelenné teszi a hűtőrendszerek alkalmazását, de ebben az esetben is le kell hűteni magukat az ioncsapdába kerülő kvantumbiteket (ezt lézerek segítségével végzik el) és számos cég nem ezt a típusú kvantumrendszert választja a számítógépek felépítéséhez, többek között éppen a dekoherencia veszélye miatt. A csapdázott ionos kvantumrendszerek azonban még a hátrányaikkal együtt is az egyik legígéretesebb verzióját jelentik a kvantumszámítógépes architektúráknak, most pedig egy egészen újszerű módszerrel tovább növelték a teljesítményüket, legalábbis elméletben.

A kutatócsapat, a New York-i Flatiron Intézet Számítógépes Kvantumfizikai Központjának munkatársának, Philipp Dumitrescunak vezetésével egyedi technikával tették robosztusabbá a qubitokat: a szokásos ismétlődő lézerimpulzusok használata helyett a Fibonacci-számsorozat mintázatához hasonló szekvenciájú lézeres kezeléssel hoztak létre olyan szokatlan anyagfázist, ami két idődimenzióval, pontosabban időszimmetriával rendelkezik. A szimmetria fontos szerepet játszik a qubitok stabilitásának fenntartásában: minél több, a változásoknak ellenálló szimmetria jellemzi az atomokat, annál nagyobb valószínűséggel tudják hosszabb ideig tartani az állapotukat zajosabb környezetben is.

A kutatók a Fibonacci-módszert a kvázikristályokkal analóg megoldásként írták le: a kvázikristályok, a valódi kristályokkal ellentétben, nem periodikusan ismétlődő mintázatot alkotó építőelemekből, hanem egy adott mintát soha nem ismétlő, de mégis rendezett formájú struktúrából épülnek fel. Ez az anyagi elrendeződés olyan szokatlan, hogy a kvázikristályokat egy kísérletben először kimutató tudós, Daniel Shechtman munkáját sokáig éles kritikák kísérték, mígnem, majdnem 30 évvel felfedezése után, végül Nobel-díjjal jutalmazták az eredményeit. A kvázikristályok legkülönösebb tulajdonsága, ahogy azt Shechtman is megfigyelte, az, hogy a mintázatukat több dimenzióban, például 5 vagy 6 dimenzióban értelmezve a periodicitás megjelenik, vagyis tulajdonképpen magasabb dimenziókban ugyanúgy szabályosan ismétlődik a minta, mint egy normál kristály esetében.

"A kvázikristályok magasabb dimenziókból alacsonyabb dimenziókba vetített kristályok."

- írják a két idődimenzióval rendelkező qubitokat felfedező tanulmánnyal kapcsolatban a Simons Foundation beszámolójában.

A Fibonacci-számsorozatra épülő lézerimpulzusok tehát ehhez hasonlóan rendszeres, de mégsem ismétlődő időközönként indultak útjukra (A, AB, ABA, ABAAB, ABAABABA mintát alkotva), ami egy kétdimenziós minta egydimenzióba való sűrítését jelenti: így sikerült létrehozni a két idődimenziónak megfelelő szimmetriát.

"A rendszer lényegében kap egy bónusz szimmetriát egy nemlétező extra idődimenzióból."

- írja az alapítvány közleménye.

A kísérlethez a Honeywell által kifejlesztett és a Cambridge Quantum és a Honeywell Quantum Solutions összefogásával létrejött Quantinuum által biztosított System Model H1 kvantumprocesszorát használták, ami 10 kvantumbites csapdázott ionos rendszerre épül és itterbium ionokat használ qubitként, a szimulációt pedig az IBM Quiskit programjával végezték el.

A kutatók összegzése szerint a módszer az első kísérleti megvalósítását jelenti egy olyan, tisztán dinamikus topológiai fázisnak, ami egyensúlyban nem tud létrejönni, valamint annak az egydimenziós bozonikus topológiai fázisnak, ami nem függ a szimmetriavédelemtől, vagyis sokkal ellenállóbb állapotot képvisel. Ez utóbbi tulajdonsága a felfedezett új anyagfázisnak lehetővé teszi több qubitos rendszerekben a hosszabb ideig tartó koherenciát és ezáltal az információ hosszabb ideig tartó tárolását, abban az esetben is, ha a kvantumbitek interakciója közben zavaró jellegű áthallások jelennek meg.

(Fotó: Quantinuum, Honeywell)

Egykor a létezésükben sem hittek a tudósok, de most új életre kelnek a kvázikristályok A világ legritkább kristályos anyagainak szerkezete olyan különös, hogy a felfedezésükért felelős kutató évekig gúny és kritikák célpontja volt, eredményeit pedig hitetlenség övezte, mígnem 2011-ben Nobel-díjat kapott a munkájáért. A kvázikristályok most egy új vizsgálatnak köszönhetően akár a mindennapokban is megtalálhatják a helyüket.


Autót vennél mostanában? Nézz bele a PLAYER AUTÓTESZT ROVATÁBA!
Minden friss és izgalmas autót kipróbálunk, amit csak tudunk, legyen az dízel vagy elektromos, olcsó vagy luxus, kétszemélyes vagy kisbusz!
Ismerd meg a ROADSTER magazint!
AUTÓK - DESIGN - GASZTRO - KULT - UTAZÁS - TECH // Ha szereted a minőséget az életed minden területén, páratlan élmény lesz!
A testen belül lehet három dimenzióban nyomtatni ezzel az ultrahang alapú eljárással
A testen belül lehet három dimenzióban nyomtatni ezzel az ultrahang alapú eljárással
Képzeljünk el egy világot, ahol az implantációk behelyezése, törött csontok kezelése komoly műtéti beavatkozás helyett lényegében annyit jelent, hogy az implantációt befecskendezzük a testbe, ahol az felveszi a szükséges alakot! A mostani fejlesztés épp ezt teszi egyszer lehetővé.
Utánunk gurul a napelem, hogy bárhol energiához jussunk
Utánunk gurul a napelem, hogy bárhol energiához jussunk
A robot elkíséri az embert a túrákra és kiválasztja a legoptimálisabb helyet és pozíciót a minél jobb energiatermeléshez.
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.