Kína mesterséges nappal világítja meg a jövőbe vezető utat

2020 / 01 / 01 / Felkai Ádám
Kína mesterséges nappal világítja meg a jövőbe vezető utat
A Kína által bejelentett fúziós reaktor, melyet a magas hőmérséklet miatt „mesterséges napnak” szoktak nevezni, kategóriájában a legnagyobb lesz. Ha az eszköz eléri a tervezett üzemi hőmérsékletét, a kétmilliárd Celsius fokot, akkor valójában tizenkét mesterséges nappal lesz egyenértékű. Mire jó mindez? A tokamak és a hasonló elven működő sztellarátor jelenti az első, fontos lépést a fúziós erőmű felé vezető úton.

A jövő energiája, az energia jövője

A fúziós energia működési elve a következő: egy reakcióban két könnyebb atom egyesül egy nehezebb atommá. A folyamatban hőenergia szabadul fel, amit áramtermelésre lehet majd használni a fúziós reaktorokban.


Fúziós reaktor

A nukleáris fúzió amúgy az a mód, ahogy például a mi Napunk is működik. A Napban óriási hőfok és nyomás alatt hidrogén atomok egyesülnek hélium atomokká, miközben nagy adag hő és radioaktív anyag távozik belőlük. Ám a jelentős különbség a jelenlegi, maghasadáson alapuló atomerőművekhez képest éppen az, hogy ez a radioaktív anyag sokkal gyorsabban lebomlik olyan szintre, ahol már kimutatni sem lehet.

Hogy jön ide a tokamak?

A tokamak lényegében egy speciális fúziós reaktor, amellyel elméleti szinten először az ötvenes években foglalkoztak szovjet tudósok. Az elnevezés a toroidális mágneses összetartású csapda rövidítése. Vagyis a tokamak egy tórusz (az amerikai lyukas fánkra emlékeztető forgástest) alakú mágneses mező, amely közepén az extrém forró plazma csapdába kerül. Ebben a plazmában kerülhet aztán sor a fúziós reakciókra.

Kisebb tokamakokkal tele a padlás – az elmúlt negyven évben rengeteg kísérleti labor készített ilyen eszközt. A gond az, hogy a csapdába ejtett plazma és a mágneses mező kontrollálása roppant nehéz feladat. Ezért a tokamakok tanulmányozása annyira elhúzódott, hogy lassanként egy régi versenytárs került helyettük az előtérbe.

Tokamak Magyarországon

Hazánkban tokamak fúziós reaktor a Kurcsatov Intézet és a Központi Fizikai Kutatóintézet (KFKI) együttműködésével készült. Az MT-1 (Magyar Tokamak 1) nevű eszközt 1979-ben szállították a Szovjetunióból a KFKI-ba. A gép lézeres atomnyaláb diagnosztikai módszerek, röntgen-tomográfia és egyéb mérési eljárások fejlesztésére szolgált. A tokamakot 1992-ben építették át, modernizálták, majd 1998-ban, az MTA konszolidációja idején leállították.

Válassz csillagot: a sztellarátor

A sztellarátor hasonló elven működik, mint a tokamak, tehát magas hőmérsékletű plazmát tart egyben mágneses mező használatával, hogy így alakuljon ki ellenőrzött magfúzió. A készülék neve arra utal, hogy működési elve hasonló ahhoz, ahogy a csillagok termelik az energiát. A sztellarátor feltalálója Lyman Spitzer volt, és bár a legelső kísérleti modell, a Model A már 1953-ban működőképes volt, idővel a vártnál alacsonyabb teljesítmény miatt a sztellarátorok háttérbe szorultak a tokamakhoz képest.


A Wendelstein_7-X

A kilencvenes években azonban a tokamak problémái odáig vezettek, hogy ismét felújult a sztellarátor iránti tudományos érdeklődés, és több új berendezés is épült. A nagyobb sztellarátorok a következők: a németországi Wendelstein 7-X, az USA-beli Helically Symmetric Experiment (HSX) és a japán Large Helical Device.

A Wendelstein 7-X 2015-ben már a legnagyobb sztellarátor volt a Földön, és a tervek szerint 2021-re képes lesz fél órán át szabályozni a plazmát, amely tehát egy tervezett fúziós reaktorhoz az első, elengedhetetlen lépés.

A Nap KELETen kél

A kínai HL-2M tokamak neve „Experimental Advanced Superconducting Tokamak” (EAST). Először 2006–ban aktiválták, majd több fontosabb állomás elérése után 2018-ban már az optimális működési hőmérséklet felén, tehát egymilliárd Celsius fokon működött. Idén pedig a tervek szerint már kétmilliárd fokon fog.


Az EAST

Az EAST tehát lényegében egy működési terv egy nagyobb fúziós reaktorhoz. A segítségével laborkörülmények közt tanulmányozható egy tokamak viselkedése. A felépítése miatt a tokamak ugyanis hajlamos a legforróbb, legnagyobb energiájú részecskéket kivetni a magjából, és ezáltal destabilizálódni, és ilyenkor kívülről kell ismét felfűteni a működési hőmérsékletre.

És ez az a probléma, ami miatt a kilencvenes évekre a tokamak helyett a figyelem inkább a sztellarátorra terelődött.

Az EAST viszont elvileg saját magától tartja fent a hőmérsékletet, és a kutatók rövidebb ideig meg is tudták őrizni a plazma állapotot az elmúlt tizenhárom évben. A mostani cél pedig a stabilabb, állandóbb plazma reakció elérése/fenntartása. Ha ez sikerül, Kína az elsők közt építhet fúziós erőművet.

(Kép: Wikipedia, Kínai Tudományos Akadémia)


Először lőttek ki hajót sínágyúval – és nem az amerikaiak voltak
Először lőttek ki hajót sínágyúval – és nem az amerikaiak voltak
Először lőttek éles célpontra hajóra szerelt sínágyúval, látványos mérföldkőhöz érve az elektromágneses fegyverfejlesztésben.
Hamarosan időkristályokkal fogunk fizetni
Hamarosan időkristályokkal fogunk fizetni
Az első, szabad szemmel is látható időkristályok fényben „pszichedelikus tigriscsíkokként” villannak fel.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.