Bár az abszolút nulla fok, azaz a -273,15 Celsius-fokos hőmérséklet a termodinamika törvényei szerint elérhetetlen, a fizikusok régóta kísérleteznek vele, hogy a lehető legjobban megközelítsék. Ez nem könnyű feladat, hiszen ilyen hőmérsékleti viszonyok a természetben nem fordulnak elő, a világegyetemben megfigylet legalacsonyabb hőmérséklet is 1 Kelvinnel volt magasabb, mint az abszolút nulla fok.
A kutatók ezen a szinten már régen túlléptek, nanokelvines nagyságrendű hőmérsékletet szinte már rutinszerűen tudnak előállítani. Az abszolút rekordot mindeddig egy 1999-es kísérlet tartotta, amelyben a finnországi Aalto Egyetem kutatóinak 100 pikokelvinre sikerült lehűteniük egy ródiumdarabot, igaz, hivatalos rekordként nem ezt, hanem a Massachussetsi Műszaki Egyetem (MIT) 2003-as kísérletét tartják számon, amelynek során 500 pikokelvinre sikerült lehűteniük nátriumgázt.
Ezeket a rekordokat egy 1995-ös tudományos áttörés tette lehetővé, amelynek során Eric Allin Cornellnek és Carl Wiemann-nak elsőként sikerült létrehoznia úgynevezett Bose-Einstein-kondenzátumot. Az Albert Einstein és Satyendra Nath Bose által megjósolt halmazállapotban az atomok mozgása összehangolódik, és egyetlen nagy részecskeként kezdenek el viselkedni. Cornell és Wiemann a módszert továbbfejlesztő Wolfgang Ketterle-vel egyetemben 2001-ben fizikai Nobel-díjat kapott a felfedezésért.
A mostani kísérletben a kutatók hasonló módszerrel dolgoztak, mint az MIT tudósai, vagyis a százezer rubídium atomot egy vákuumkamrában mágneses mezőbe zárták, majd a gázfelhőt lehűtve létrehozták a Bose-Einstein-kondenzátumot. A vákuumkamrát ezután felvitték a brémai ZARM ejtőtoronyba, ahol 120 méteres magasságból ejtették le, miközben a mágneses mezőt többször is be- és kikapcsolták. Ezzel a kutatóknak sikerült elérniük, hogy a gázok tágulása rendkívüli módon lelassuljon, így elérve a rekordot jelentő, 38 pikokelvines hőmérsékletet.
Bár a Physical Review Letter című tudományos folyóiratban megjelent tanulmány szerint a kutatóknak ezt az állapotot mindössze két másodpercig sikerült fenntartani, a szimulációk szerint mikrogravitációs környezetben akár 17 másodpercig is lehetséges lenne ugyanez. A NASA-nak meg is van hozza a felszerelése, hiszen 2018 óta a Nemzetközi Űrállomás már egy Cold Atom Laboratoryval is rendelkezik, amit kifejezetten annak érdekében hoztak létre, hogy a földinél hidegebb állapotot tudjanak előidézni. Bár a Cold Atom Labbal eddig végzett kísérletekben a leghidegebb hőmérséklet 100 nanokelvin volt, de a készülék elméletben akár egy pikokelvines hőmérsékletet is létre tud hozni.
(New Atlas, Wikipedia, Ma is tanultam valamit, Borítókép: Getty Images)