Mint arról korábban már írtunk, a NASA 40 év után fogott új szkafander fejlesztésébe, amely nem csak a Holdon, de később akár a Marson is szolgálhatja az asztronautákat. Az Exploration Extravehicular Mobility Unit (xEMU) nevú védőfelszerelés moduláris kialakítású, vagyis mindenféle szélsőséges viszony elviselésére át lehet alakítani. Erőssége amellett, hogy védelmet nyújt, az, hogy a földi környezetben megszokott, nagyobb mozgásszabadságot is lehetővé teszi – ez például egyáltalán nem volt jellemző az Apollo program nehézkes űrruháira.
Arról is írtunk, hogy a szkafander fejlesztése késedelmet szenved, ami az egyik, de nem egyetlen oka, hogy a 2024-re tervezett Holdra szállás elég nagy bizonyossággal csúszni fog. Az pedig, hogy egy ilyen öltözék kifejlesztése mekkora feladat, már abból is látszik, hogy az azt felépítő szövetek kiválasztása is hosszas, rengeteg teszteléssel járó folyamat – ez utóbbiban, tehát a teszteléssel kapcsolatban segíti a munkát a NASA Glenn Research Center-ében működő Ballistic Impact Lab, amely különböző becsapódásokat szimulál. A Hold felszínén az életet nehezítő kihívások egyike ugyanis a mikrometeorit, tehát olyan apró kövek, kavicsok és porszemcsék, amelyek akár 35 000 km/h-nál is gyorsabban száguldhatnak. A Ballistic Impact Lab pedig épp a becsapódásnak történő ellenállás szempontjából vizsgálja a kiválasztott anyagokat.
A laboratórium a célra egy 12 méteres légpuskát használ, amely 910 m/s-os sebességgel képes kilőni egy-egy lövedéket. A NASA a labort egyébként nem csak a mikrometeoritok szimulálására használja, de így tesztelik például, hogy mi történik ha egy repülőgép madárral ütközik. Az első tesztsorozatban olyan szöveteket vizsgáltak, melyeket a lakóegységeknél lehetne felhasználni – ezek relatíve puhák és rugalmasak, de ha találat éri őket, akkor szilárdak.
A vizsgálathoz a puskát vákuumkamrára kötötték, melyben a Hold felszíni viszonyaihoz hasonlóan nincs légellenállás – így a lövedék (ebben a konkrét esetben acélból készült golyóscsapágyak) gyorsabban száguld. A különféle anyagok viselkedését a terhelés alatt nagy sebességű kamerákkal, valamint különböző érzékelőkkel rögzítették. A becsapódás egyébként közel maximális terhelést jelent az anyagok számára, így ezek megbízhatóságának a határa is könnyebben megállapítható. A szkafanderekhez használt kompozit szöveteket pedig úgy tesztelték, hogy egy készülék (vertical-impact-drop tester) segítségével a Holdon található kőzetet szimuláló bazaltot ejtettek ezekre. A labor legközelebb egyébként olyan anyagokat vizsgál, amelyeket az űrszemét befogására használnának majd fel.
(Kép: A vertical-impact-drop tester, forrás: NASA)