A németországi Darmstadti Műszaki Egyetem és a dán Roskilde Egyetem fizikusainak a meglepő felfedezése alapján az idő nem mindig egyetlen, visszafordíthatatlan irányba halad. Az üveggel és más hasonló anyagokkal végzett kísérletek alapján ugyanis ezekben az idő visszafordítható – számol be róla a Science Alert.
Hagyományosan a fizika törvényeit közömbösnek kezeljük az idő irányával szemben. Például az egyenletek megfordíthatók egy objektum múltbeli pályájának nyomon követéséhez – ami egy elméleti fogalomhoz, az idő reverzibilitásához vezet. Más kérdés az általunk érzékelt valóság: az univerzum sorsát a növekvő rendetlenség vagy entrópia szabályozza, összhangban a termodinamika második főtételével.
Az entrópia alapvetően azt jelenti, hogy egy rendszer a teljes rendezettségből tart a teljes rendezetlenség irányába – hasonlatként fel lehet hozni a tejbegrízt, amire kakaót szórunk: ahogy elkeverjük, a kakaó és a massza lassanként visszavonhatatlanul összevegyül a porral – eggyé válik vele, vagyis működésbe lép az entrópia. Mindez azonban nem csak a tejbegrízre igaz, hanem a teljes univerzumra, amely a fizikusok szerint hasonlóan tart az alacsony entrópiától a magas fokozatú entrópia felé betartva tehát a termodinamika második főtételét, amely azt diktálja, hogy az entrópia csak növekszik egy rendszerben, ami megmagyarázza az idő előrehaladását: emiatt nem lehet ugyanis a már összekevert tejbegrízt szétválasztani ismét kakaóra és üres darára.
A most szóban forgó tanulmány alapján azonban az üveg és más hasonló anyagok nem úgy változnak az idő múlásával, mint a legtöbb anyag, tehát sem a bomlás, sem a rozsdásodás nem jellemző ezekre. Az üveg bizonyos polimerekkel és amorf szilárd anyagokkal együtt a nem kristályos anyagok csoportjába tartozik – és ezek az anyagok tipikusan rendezetlen részecskékből állnak, és hajlamosak a belső entrópiájuk által vezérelt stabil állapot felé haladni.
Az “anyagidő” fogalma az 1970-es évek óta vitatéma, és eszerint az anyagok belső folyamataik szerint öregszenek, külső tényezőktől függetlenül. Ezt a koncepciót a Tool–Narayanaswamy formalizmus segítségével tárták fel, de empirikusan eddig nem igazolták.
Az igazolás eddigi hiánya nem is a véletlen műve, a Till Böhmer, a kondenzált anyagok fizikusa által vezetett kutatócsoport jelentős kihívásokkal nézett szembe, csak hogy egy olyan hétköznapinak látszó dolgot elvégezzen, mint az üveg öregedésének a megfigyelése. A kísérlethez nagyon érzékeny videokamerát alkalmaztak az üvegmintákról szórt lézerfény rögzítésére. Az így létrejövő interferencia-mintázatok lehetővé tették a kutatók számára, hogy megfigyeljék és értelmezzék az üveg molekuláris szintű ingadozásait, empirikus betekintést nyerve az anyagidőbe a tudomány történetében először.
A megfigyelések alapján pedig molekuláris szinten az idő visszafordíthatónak tűnt az üvegben. Látható volt, hogy az üvegben lévő részecskék átrendeződnek oly módon, hogy szembeszálltak az entrópia által vezérelt idő szokásos irányával – ez a visszafordíthatóság ráadásul annyira mély volt, hogy ha a megfigyelt folyamatokat visszatekernénk, lehetetlen lenne megállapítani, hogy a felvétel előre vagy hátra játszódik-e le.
Böhmer azonban tisztázta, hogy ez nem jelenti az anyagöregedés tágabb értelemben vett megfordulását, mivel a teljes rendszernek még mindig el kell érnie az entrópia által megszabott egyensúlyi állapotot. Mégis, molekuláris szinten a részecskék egyfajta függetlenséget mutatnak, és úgy oszcillálnak, hogy látszólag figyelmen kívül hagyják az entrópia irányát kijelölő nagyobb erőket.
(Kép: Pixabay/FunkyFocus)