Minden korábbinál pontosabb tanulmány készül a bolygó belsejéről

2020 / 05 / 25 / Perei Dóra
Minden korábbinál pontosabb tanulmány készül a bolygó belsejéről
A Cardiffi Egyetem kutatói a földköpeny viselkedését szimulálják kísérletük során, hogy felmérjék a réteg áramlásainak mintázatát, és ezáltal jobban megértsék, miként befolyásolta a köpeny mozgása a felszín változását az évmilliók során.

A szakértők a napokban beszéltek a BBC tudósítójának nagyra törő tervükről, amely alapjaiban megváltoztathatja bolygónkról szerzett ismereteinket. Huw Davies, a kutatócsapat vezetője szerint ahogy DNS-vizsgálattal jobban megérthetjük a biológiai és az evolúciós folyamatokat, úgy járul hozzá Földünk mélyének tanulmányozása a bolygó működésének megismeréséhez. A lemeztektonikáról már bizonyára sokan hallottak, ezen elmélet ad magyarázatot a litoszféra, más néven a földi kőzetburok mozgására. Az első hipotézist az 1950-es években dolgozták ki, ami azóta több módosításon átesett. Korábban például a szakemberek nem tudták, hogy az óceáni lemezek tömegük miatt buknak a kontinensek alá. Ugyanakkor a lemezek szegélyén fellelhető hideg, sűrű kőzet mást is 'magával rántott' süllyedésénél, ám ez az anyag idővel elkezdett visszafelé áramolni, méghozzá a mélyben lévő magas hőmérséklet miatt. A legújabb projekt célja feltérképezni eme folyamat részleteit.

Hála a szeizmológiának, a kutatóknak mostanra meglehetősen precíz elképzeléseik vannak a bolygó belsejének kinézetéről: Daviesék azt remélik, hogy modelljeik a valós adatoknak megfelelő eredményeket mutatnak majd.

A tanulmány egyik fő célja megismerni az úgynevezett feláramlásokat, melyek létrehozzák a földtörténet legaktívabb vulkáni területeit.

Davies szerint az utolsó ilyen régió kialakulása körülbelül tízmillió évre tehető, melynek nyomairól a Columbia folyó környéki bazaltvidék árulkodik.

A Föld magja nem is létezhetne?

Az általánosan elfogadott elmélet szerint körülbelül egymilliárd évvel ezelőtt a Föld belső magja hirtelen megnövekedett, melynek következtében a hőmérséklet lecsökkent, az olvadt fém pedig kristályosodott. A mag duzzadása végül ezerkétszázhúsz kilométernél állt meg, és ezzel elérte mai méretét. Nos, az Earth and Planetary Science Letters folyóiratban megjelent 2018-as tanulmány szerzői hibásnak találják a fenti elképzelést, az ugyanis figyelmen kívül hagyja a kristályosodásra vonatkozó kulcsfontosságú tényezőt: az alapvető probléma az, hogy ekkora nyomáson nehezen alakul ki akkora hőmérsékletcsökkenés, melyet az elmélet feltételez.

"Ha ezt a faktort beépítjük a modellbe, a Föld magja gyakorlatilag nem is létezhetne." - mondja Steven Hauck, a Case Western Reserve Egyetem munkatársa, a tanulmány vezető szerzője.

Hozzátette: ez az első alkalom, hogy valaki felfigyelt erre a hibára. A pont, amelyen az anyag termodinamikai állapota láthatóan megváltozik, az úgynevezett gócképződési vagy nukleációs gát: példának okáért a víz nulla Celsius-fokon megszilárdul, de gyakran hosszú órák eltelnek, mire a fagyáspont alatt tárolt folyadék ténylegesen megfagy. Ellenben ha még hidegebb környezetbe helyezzük, esetleg egy nagyobb jégdarabot teszünk a folyadékba, a fagyás sokkal hamarabb bekövetkezik. Ezáltal pedig a gócképződési gát csökken.

A kutatók hangsúlyozzák, hogy a Föld belső magjánál egy csekély mennyiségű jég még nem okozna jelentős hőmérsékletcsökkenést. Hauck szerint pedig a spontán kristályosodáshoz legalább ezerháromszáznegyven Celsius-fok alá kellene hűteni az anyagot. Ez viszont sokkal nagyobb lehűlés, mint amire a csapat számított.

Ennek tükrében elképzelhető, hogy egy hatalmas szilárd fémtömeg levált a köpenyről, és ez idézte elő a hirtelen kristályosodást.

Hauckék becslései alapján a darab legalább húsz kilométer átmérőjű lehetett, ugyanakkor hangsúlyozzák: meglehetősen kicsi az esély egy ekkora tömeg leszakadására. A csapat reméli, hogy mások is megvizsgálják elméletüket, céljuk pedig felkutatni a hatalmas fémdarab-leválás bizonyítékait. A bolygó belső magjának elemzése természetesen nem könnyű feladat, így valószínűleg évekig tart majd begyűjteni a szükséges adatokat.

Nikkel nélkül nem lehetne élet a Földön?

Egy szimulációs kísérlet értelmében a forró földmagban található, mintegy húszszázaléknyi nikkel kulcsfontosságú a Föld mágneses erőterének kialakulásában, merthogy a vas önmagában nem ad magyarázatot a dinamóhatásra. Bár a Föld mágneses terét elsősorban a jórészt vasból álló belső mag folyékony részének dinamóhatása alakította,

a húsz százaléknyi nikkel nélkül ez nem alakulhatott volna így - olvasható a Nature Communications című szaklapban a würzburgi és bécsi fizikusok tanulmánya.

A Föld fémes belsejét a mintegy hétezer kilométer átmérőjű földmag alkotja: ez nagyjából a Hold mérete, és olyan forró, mint a Nap felszíne. Nyomása több száz gigapascal, amit legegyszerűbben úgy képzelhetünk el, mintha egyszerre több mozdony egyetlen négyzetmilliméteren fejtene ki nyomást. "Ilyen körülmények között az anyagok teljesen másképp reagálhatnak a megszokottnál. Laboratóriumi körülmények között ezt nehéz előállítani, de bonyolult szimulációval kiszámítható a földmag fémjeinek viselkedése a kvantummechanika szintjén" - mondja Karsten Held, a Bécsi Műszaki Egyetem kutatója, a tanulmány szerzője. A földmag hőjének utat kell találnia fölfelé, ezért a forró anyag a bolygó felsőbb rétegei felé szállva úgynevezett konvekciós áramlatokat generál. Emellett ne feledkezzünk meg a Föld forgásáról, ami szintén nagy erőt hoz létre (szakmai berkekben ezt hívják Coriolis-erőnek), a kettő együtt pedig a forró anyag spirális áramlását eredményezi.

"Ha az áramlásrendszerben elektromos áram keletkezik, az mágneses teret hozhat létre, ami tovább erősíti az elektromosságot egészen addig, míg a mágneses erő akkora lesz, hogy már a Föld felszínén is mérhető lesz" - magyarázta Alessandro Toschi, a Bécsi Műszaki Egyetem munkatársa.

Mostanáig azonban nem volt tisztázott, miért jönnek létre a Föld magjában a konvekciós áramlatok, mivel a vas jó hővezető, ez a képessége nagy nyomás pedig tovább erősödik. Érdekesség, hogy a földmag dinamóhatása hozza létre és fenntartja a föld mágneses mezejét, a földi élővilág számára legfontosabb védelmet a Napból érkező részecskék, valamint a világegyetem mélyéről érkező kozmikus sugárzás ellen.

(Fotó: Public Domain Pictures)


Hello Szülő! Ha a gyereked nem tud valamit, akkor téged fog kérdezni. De ha te szülőként nem tudsz valamit, akkor kihez fordulsz?
A digitális kor szülői kihívásairól is találhattok szakértői tippeket, tanácsokat, interjúkat, podcastokat a Telekom családokat segítő platformján, a https://helloszulo.hu/ oldalon.
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Hogyan válasszunk külföldi egyetemet? És mennyibe fog ez kerülni a családnak?
Repül már a vén diák. Hová? Hová?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogyan vélekednek a magyarok a net veszélyeiről – és kik a leginkább fenyegetettek?
Hogy áll a magyar lakosság generációkra bontva a kiberbiztonsághoz? – Erről szól az ESET rendkívül átfogó felmérése, amelyből olyan meglepő eredmények is kiderülnek, hogy kik a romantikus csalások legfőbb célpontjai, miközben az adott csoport nem is nagyon ismeri ezt a fenyegetést.
Ezek is érdekelhetnek
HELLO, EZ ITT A
RAKÉTA
Kövess minket a Facebookon!
A jövő legizgalmasabb cikkeit találod nálunk!
Hírlevél feliratkozás

Ne maradj le a jövőről! Iratkozz fel a hírlevelünkre, és minden héten elküldjük neked a legfrissebb és legérdekesebb híreket a technológia és a tudomány világából.



This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.